

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied	Mathematics and Statistics
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 7
COURSE CODE: RAN701S	COURSE NAME: REAL ANALYSIS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER	DR NEGA CHERE			
MODERATOR	PROF FORTU <i>NE'</i> MASSAMBA			

INSTRUCTIONS				
1.	Answer ALL the questions in the booklet provided.			
2.	Show clearly all the steps used in the calculations.			
3.	All written work must be done in blue or black ink and sketches must			
	be done in pencil.			

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1

Let (x_n) be a sequence of real numbers and $x \in \mathbb{R}$.

- 1.1. Define what does it mean to say the sequence (x_n) converges to x? [2]
- 1.2. Use the definition in (1.1) to establish the sequence $\left(\frac{\sin(\sqrt{n})}{\sqrt{n}}\right)$ converges to 0. [9]

QUESTION 2

Find
$$\lim_{n\to\infty} \left(\frac{n-\sqrt{n}}{\sqrt{n}+n}\right)$$
. [5]

QUESTION 3

- 3.1. Define what does it mean to say a sequence (x_n) in \mathbb{R} is a Cauchy sequence? [3]
- 3.2. Use the definition in (3.1.) to show that the sequence $\left(\frac{n^2+3n}{n^2}\right)$ is a Cauchy sequence. [14]

QUESTION 4

4.1 Determine the sum of
$$\sum_{n=0}^{\infty} \frac{6}{(n+6)(n+7)}$$
 using partial fraction decomposition. [14]

4.2. Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{3n+2}{\sqrt[3]{n^7+2n+1}}$ converges absolutely or conditionally. [10]

QUESTION 5

Use the Epsilon- delta (
$$\epsilon - \delta$$
) definition to show that $\lim_{x \to 1} \frac{x-4}{x+2} = -1$. [13]

QUESTION 6

Show, using the definition of uniform continuity, the function $f(x) = \frac{x}{x+1}$ is uniformly continuous on [0,3].

QUESTION 7

Apply the mean value theorem to prove that $|\sin y - \sin x| \le |y - x|$ for all $x, y \in \mathbb{R}$. [7]

QUESTION 8

8.1. Find the fifth d	legree Taylor po	y nomial $p_5(x)$	of $f(x) =$	= e ^x centered at 0.	[7]
-----------------------	------------------	---------------------	-------------	---------------------------------	-----

8.2. Determine a bound for the error when $e^{0.5}$ approximated by $p_5(x)$. [6]

END OF FIRST OPPORTUNITY EXAMINATION QUESTION PAPER